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Abstract

In this paper, we apply set partitioning to multi-dimensional signal spaces over GF(q),

particularly GFq-l(q) and GFq(q), and show how to construct both multi-level block codes

and multi-level trellis codes over GF(q). We present two classes of multi-level (n, k, d) block

codes over GF(q) with block length n, number of information symbols k, and minimum

,1-1 • { d }distance d_n >_ d, where n = nln2,1c = n-_=o mm [i-_]-1,n2 , nl = q- 1 or q,

n2 = q - 1,q, or q -t- 1, and [x] is the smallest integer larger than or equal to x. These

two classes of codes use Reed-Solomon codes as component codes. They can be easily

decoded as block length q - 1 Reed-Solomon codes or block length q or q + 1 extended

Reed-Solomon codes using multi-stage decoding. Many of these codes have larger distances

than comparable q-ary BCH codes. Longer block codes can be constructed by using q-ary

BCH codes, or other q-ary block codes, as component codes. Low rate q-ary convolutional

codes, word error-correcting convolutional codes, and binary-to-q-ary convolutional codes

can also be used to construct multi-level trellis codes over GF(q) or binary-to-q-ary trellis

codes, some of which have better performance than the above block codes. All of the new

codes have simple decoding algorithms based on hard decision multi-stage decoding.
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1 Introduction

In this paper, we combine multi-level coding with set partitioning of multi-dimensional signal

spaces to construct several new classes of block and trellis codes over GF(q). Many of these

codes have a better trade-off of minimum distance, information rate, and decoding complexity

than previously known q-ary codes. A simple, fast decoding algorithm based on hard decision

multi-stage decoding is also presented.

The technique of multi-level coding has been introduced in several recent papers [1-6,

10, 11]. Most researchers have considered the case where the signals are points in an N-

dimensionalEuclidean space and the codes are designed to maximize the minimum Euclidean

distance. Binary block or convolutional codes which maximize the minimum Hamming

distance have been used as component codes to construct multi-level codes based upon

binary (two-way) set partition chains. However, little work has been done on multi-level

codes based upon q-way (q > 2) set partition chains, which require the use of q-ary codes

as component codes. In the following sections, we will apply set partitioning to multi-

dimensional signal spaces over GF(q), particularly GFq-_(q) and GFq(q), and show how to

construct both multi-level block codes and multi-level trellis codes over GF(q). These new

codes use q-ary block and convolutional codes as component codes.

In Section 2, we construct two q-way set partition chains for GFq-_(q) and GFq(q) by

using Reed-Solomon codes and shortened extended Reed-Solomon codes, respectively. Based

on these set partition chains, in Section 3 we construct two classes of multi-level (n, k, d)

block codes over GF(q) with n = nan2 and k = n- _'=_olmin{[/+-_l]- 1,n2), where

nl = q- 1 or q, n2 = q-l,q, or q+l, and Ix] is the smallest integer larger than or

equal to x. (Throughout the paper, an (n, k, d) block code means that the code has block

length n, number of information symbols k, and design distance d, which may be less than

the minimum distance dmin of the code.) These two classes of codes use Reed-Solomon



codesas componentcodesand have the following advantagesover q-ary BCH codes and

Reed-Solomon codes:

1. Block lengths of order q2 can be achieved, as opposed to block lengths of order q using

Reed-Solomon codes.

2. For the same Hamming distance, many of these codes have higher information rates

than q-ary _3CH codes.

3. Since these codes have a multi-level structure, they can be simply decoded using hard

decision multi-stage decoding of the component Reed-Solomon codes.

In Section 4, we use q-ary convolutional codes as component codes to obtain a class of

q-ary trellis codes with higher information rates than the two above classes of block codes.

In Section 5, we present another class of codes, binary-to-q-ary trellis codes, which provide

more trade-offs between information rate and decoding complexity for the same minimum

distance.

Although this study of multi-level codes over GF(q) is motivated by the problem of

finding multi-level codes based on higher-way set partition chains for QAM and PSK signal

constellations, the new codes are interesting in their own right and can be used to correct

both random errors and burst errors if the channel symbols are elements in a subfield of

aF(q).

2 The Set Partition Chain of GFq-l(q) and GFq(q)

The new codes use a multi-level construction based on set partition chains of the multi-

dimensional signal spaces GFq-l(q) and GFq(q). The purpose of this section is to construct

these two set partition chains. In the following, we use both polynomials and vectors to

3



representcodewords,i.e., the polynomial representationof the codeword (Co,ca,..., cn-1) is

C O -_- ClX _ ... -_ Cn_l xn-1.

For simplicity, and without loss of generality, suppose the generator polynomial of the

(nl, nl - i, i + 1) Reed-Solomon code over GF(q), donated by RS(i), is

gi(x) =(X-- 1)(X -- O) ...(X -- 0i-1), i---- 1,2,...,q- 1, (1)

where n_ is equal to q - 1 and 0 is a primitive element of GF(q). In particular, let RS(O) =

GFq-l(q). Also, let the minimum distance of a single point in the set GFq-a(q) (a single

codeword in RS(O)) be oo. Next define

P,(x) a_ (x - 1)(x - 0)... (z - 0/-1)
(0'-1)(0'-0)(0'-0 '-1 ) ' i= l,2,...,q-1, (2)

p0(x) 1. (3)

and

Lemma I Fori = 0,1,...,q-1, ifCi(x) is a code polynomial in RS(i), i.e., C,(x) E RS(i),

then C,(x) - P,(x)C,(O') E RS(i + 1).

This can be easily proved by showing that 1,0,..., 0 i are roots of C_(x) - P_(x)Ci(O_),

i.e., g,+a(x)[C_(x) - P_(x)C,(O'). The next lemma follows directly from Lemma 1.

Lemma 2 For any i = O, 1,..., q - 1, and for any arbitrary C_(x) E RS(i), C_(x) can be

uniquely expressed as

Ci(x) = P,(x)C_(O') + Ci+,(x),

where Ci+l(X) e RS(i + 1). In other words, Pi(x)y,

tatives of RS(i + 1) in RS(i).

(4)

y E GF(q), generates q eoset represen-

From the above two lemmas, we have
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Theorem 1 GF(q-1)(q) = RS(O)/RS(1)/.../RS(q-2)/RS(q- 1) = {0} is a set partition

chain with Hamming distances 1/2/.../q - 1/oe.

Multi-level codes or other coset codes based on higher dimensional signal sets can some-

times achieve larger coding gains than codes based on lower dimensional signal sets. This

motivates us to also construct a set partition chain for GFq(q), corresponding to shortened

extended Reed-Solomon codes. The extended Reed-Solomon codes have two more informa-

tion symbols than the Reed-Solomon codes while maintaining the same minimum distance

and number of redundant symbols [12]. But we cannot construct a set partition chain for

GFq+l(q). To obtain a set partition chain for GFq(q), we use shortened extended Reed-

Solomon codes, which are obtained by dropping the last symbol of extended Reed-Solomon

codes. These codes can be defined as follows.

Definition 1 Let d be an arbitrary integer. A shortened extended Reed-Solomon code is a

linear code over GF(q) of block length n = q whose codewords (c_, co, cl,..., cq-2) have the

following properties:

1. (C0, Cl,...,Cq_2) i8 a codeword of a (q - 1,q - d+ 1,d- 1) Reed-Solomon code with

generator polynomial

G(x)=(x-1)(x-O')...(x-O d-3) (d> 3), (5)

°

where 0 is a primitive element of GF(q) and G(x) = 1 for d = 2;

C_ ----- C O Jr Cl 0-1 "Jt- C20 -2 "Jr- ... "_- Cq--20 -(q-2). (6)

Again without loss of generality, let RS'(O) = GFq(q) and RS'(i) be a shortened extended

Reed-Solomon code with d = i + 1, for i = 1,2,... ,q - I. The next lemmas are similar to

Lemmas 1 and 2 and follow directly from Blahut [12].
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Lamina 3 The minimum Hamming distance of RS;'(i) is i + 1, for i = 0, 1, 2,..., q- 1, and

RS'(i) D RS'(i + 1),i = 0,1,...,q- 2.

iemma 4 1. For any arbitrary codeword C_ = (c__,C'o,...,c'q_2) E RS'(O),C_ can be

uniquely expressed as

q-2

Co (c'_'= - cjO ,O,O,...,O) + C,, (7)
j=O

where C_ E RS'(1) and (9-j = 0 q-l-j. That is, (y, O, 0,..., 0), y e GF(q), generates q

coset representatives of C_ in C_.

2. For any arbitrary codeword C_ • RS'(i), i = 1,2,...,q - 1, C_ can be uniquely

expressed as

, (_-}..(1)O_ L .,(i). .,(i). ,p!OlY, O,O,... O)+C'C_ = _,j _,e0 _,el _,"" , i+1 (8)
\j=l

where C_+ 1 • RS'(i + 1), Ci-1 • RS(i- 1), C$ = (c_,Ci), y = Ci-l(Oi-1), and the

(0, •
Pj t3 = 0,1,...,i - 1) are the coefficients of

Pi-l(X) - p(i)x -]-... q- p!i)lXi-'. (9)

That is, i-1 ,,(i)__j,, _(i),, ,,(i)_, (i) 0(Zj=oej ,- _,e0 S, el _,"',Pi-lY, ,0,...,0), y e GF(q), generates q coset

representatives ofC_+ 1 in C[, i = 1,2,...,q- 1.

These two lemmas lead to

Theorem 2 GFq(q) = RS'(O)/RS'(1)/... /RS'(q-1)/RS'(q) = {0} is a set partition chain

with Hamming distances 1/2/.../q/_.

3 Constructions of Block Codes Over GF(q)

The general structure of multi-level codes has been described in many references [1-6, 10,

11]. Here we briefly discuss the principle of encoding for multi-level codes based on a q-way

set partition chain.



Suppose H0 is a signal set in a multi-dimensional space over GF(q) and it generates a

group under some operation, for example, addition in GF(q). For i = 1,2,...,ra, Hi is a

subgroup of Hi-l, and Hm contains a single element of the space. The coset representative

of Hi-x in Hi is denoted by [Hi-1/Hi], and the number of cosets is [Hi-i/Hi[ = q, for

i = 1,2,..., m. From the theory of basic algebra, H0 can be expressed as

m

Ho= E[Hi-,Ini]. (10)
i----1

Thus we have a partition chain Ho/H,/.../Hm with distances A0/A,/.../Am-1/oo , where

Ai is the minimum subset distance of Hi under the distance metric in H0, i.e., Hamming

distance.

Figure 1 shows the structure of an encoder for a multi-level code based on the set par-

tition chain Ho/H1/.../H,.,, = {0}, where Ei is the encoder corresponding to code Ci with

information rate Ri and minimum free Hamming distance di, i = 0, 1,..., m - 1. The cod-

ing procedure is as follows: First, the information sequence is partitioned into m component

information sequences having rates R0, R1,...,Rm-1, (0 _ Ri __ 1, i = 0,1,...,m - 1).

The i th component information sequence enters encoder Ei, for i = 0, 1,..., rn - 1. In prin-

ciple, code Ci may be any kind of code with output symbols over GF(q). Each output

symbol of Ei selects a coset of HjHi+I. In this section, we only discuss the case where every

component code is a block code. In the following two sections, we will show how to improve

the information rate by using convolutional codes as component codes.

Suppose Ci is a block code with block length n2, for i = 0,1,...,m - 1. Let Ii(x)

be an information polynomial of encoder Ei and Yi(x) be a code polynomial in Ci, i =

0,1,...,m-1. Fori=0,1,...,m-1, Yi(x) can be expressed as

" • (i) Xn2-1 (11)Y,(z) = yo(')+ +.. +

For fixed j, each- (0 specifies a coset of Hi+l in Hi, for i 0, 1, , m- 1. By (10) an uniqueyj -- ... ,

point in H0, denoted by Sj, j = 0, 1,..., n2 - 1, is specified by yJ0 (i = 0, 1,... ,m - 1). So
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the multi-level block code is the set of output signals

s = {(&,&,...,s,__i) : y,(x) _ a,, i = 0,1,...,m - 1}, (12)

where Si E H0, i = 0, 1,...,n2 - 1. From references [2-5, 11], a lower bound exists on the

minimum distance of the code:

dml. >_ d =_ min {Aidi, 0 < i < m -- 1}. (13)

Therefore, to construct a code, we must choose a suitable set partition chain and a set

of component codes. The two classes of multi-dimensional signals introduced in Section

2 provide good choices for set partition chains, and Reed-Solomon codes, extended Reed-

Solomon codes, and shortened extended Reed-Solomon codes can be used as component

codes. Now we discuss these codes in detail.

Construction A. This class of codes is based on the set partition chain RS(O)/RS(1)/.../RS

(q- 2)/{0). To construct a code with design distance d (d < q- 1), we use component codes

Ci= RS([7_]-l),fori=O,1,...,d-2, and Ci= RS(0), for d-1 <i < q-2, where Ix]

is the smallest integer larger than or equal to x. According to (13), this code has minimum

distance dmi_ > d > d. A codeword in this code can be expressed as follows:

Y,(_) = I,(_)gr_l_a(x)

(i) xq_2 for i 0,1, d 2, (14)= y(1) + y_i)x +... +yq_2 , = "", --

.(1)_.q-2 fori d 1, .,q 2, (15)and Y,(_) = I,(x) = y0(')+ y_')_+... + _q-2_ , = - .. -

where yji) E GF(q), for i = 0, 1,...,q-2, j = 0,1,...,q-2. It follows from Lemma 2 that

the jth (q _ 1)-tuple in a multi-level codeword can be written as

q-2

S(J)(x) _- __, P,(x)yJ i). (16)
i=0

Thus, a (q - 1)_-tuple codeword can be expressed as

q-2

j=O
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q--2 q--2

= _ _ xJ('-l)P,(x)y_'). (171
j----O i=0 *

v,d-1 rdq _ (d - 1), and the minimum Hamming distanceIn this case, n = (q - 1) 2, k = n - _i=1 IT/

dmj, >__d.

To construct codes with design distance d (q - 1 < d < (q - 1)2), let Ci = {0}, i.e.,

ki = 0, for i < [q---_dx]- 1, and C_ = RS ([/"_1] - 1), for i >_ [7__dl] -- 1. In this case, Y,.(x) = 0

for i < [q_--Tdl]-- 1, and Y_(x) can be written as in (14) for i >_ [q_-_dl]-- 1. The number of

information symbols in a codeword is

q-2 [ d ] d - (18)k E (q (rT -il 11 q(q Fq_---L--Tl) d= - - - = - - FT- I.
i= rT_-r_d_1-1 '=L-'_'r_,l-1

Other block codes over GF(q), such as extended Reed-Solomon codes, shortened extended

Reed-Solomon codes, and BCH codes over GF(q) can also be used as component codes. In

general, if a code polynomial in Ci is

.(0 ..n2-I fori 0,1, .,q 2,Yi(x) = y(o i) -_ y_i)x +... Jr- yn2_i.x, , = .. - (19)

then a codeword in the multi-level code can be expressed as

n2--1 q--2

s(x) E E _('-" (')= x Pi(x)y s . (20)
j=0 i=0

If we take only Reed-Solomon codes, shortened extended Reed-Solomon codes, and extended

Reed-Solomon codes as component codes, we obtain block codes over GF(q) having the

following parameters:

block lengthn=(q-1) 2, q(q-1), orq2-1,

number of information symbols

d-,@k = n - '_-'] - (d- 1),
i=,

(d<_n/(q-l))



or

,qi, +,) q- 1- E rl,
q- 1 n i=._o-n./_x_/

and minimum Hamming distance d_n _> d (d < n).

(d>n/(q-1))

Construction B. This class of codes is based on the partition chain RS'(O)/RS'(1)/.../RS'

(q - 1)/{0}. Similar to Construction A, a code polynomial in component code Ci can be

expressed as

,(i) _.,_-a fori=O, 1, q-1y,(x) = v_')+ y_')x+... + _.2-,.... , • (21)

From Lemma 4, the jth q-tuple in a multi-level codeword can be written as

q-1 i-1 q-1

s(j)(x ) =A yJO) _jr_ E E "k(i)_-kO YJ(i) _F x E pi_l(x)yJi). (22)

i=l k=l i=l

Thus a codeword in the multi-level code can be expressed as

s(x) E x" y_o)+E E (') (,)o-k . (231= Pk Vj a +x___P,_,(x)v_ 0
j=O i=1 k=o i=1

Using Reed-Solomon codes, shortened extended Reed-Solomon codes, and extended Reed-

Solomon codes as component codes, we can obtain block codes over GF(q) having the fol-

lowing parameters:

block length n = q(q - 1),q 2, or q(q + 1)

or

_d

number of information symbols k = n -/_[_-].= - (d- 1), (d <_ n/q)

n dq q d
k = (q + 1) (q - [71 + 1) - _ [il' (d > n/q)

i=r_l

and minimum Hamming distance drain > d (d g n).

In summary, we have constructed two classes of block codes over GF(q) having the

followi_ng parameters:

10



a) block length n = nln2, where nl = q - 1 for construction A and q for construction

B, and n2 = q- 1, q, or q + 1, which is the block length of Reed-Solomon codes, shortened

extended Reed-Solomon codes, and extended Reed-Solomon codes, respectively.

b) number of information symbols k = n - _'__' o 1 min { [_] - 1, n2}.

c) minimum Hamming distance drain > d.

Table 1 shows all the codes in the above two classes over GF(4) with dmin >_ 3. Table 2

shows some construction B codes over GF(8) with block length 72 and minimum distance

from 3 to 15, where the redundancy of the component codes is p, = min { [i--_1] -1,9},i =

7
0,1,...,7, and the total redundancy is p = _i=oP"

Example 1. The (20, 9, 8) construction B code shown in Table 1 is based on the set partition

chain GF4(4) = RS'(O)/RS'(1)/RS'(2)/RS'(3)/RS'(4) = {0} with distances 1/2/3/4/oo.

It contains four extended Reed-Solomon codes as component codes: Co = (5, 0, oo), C1 =

(5,2,4),C2 = (5,3,3), and C3 = (5,4,2). It has a higher information rate (_ vs. _) and a

larger minimum distance (8 vs. 7) than the (15, 6, 7) BCH code over GF(4).

Table 3 presents a comparison between BCH codes and the new codes over GF(4).

Although some codes shown in Table 1 are not as good as BCH codes, there exist many new

codes better than BCH codes. Moreover, the decoding complexity of these new codes is less

than the BCH codes.

Table 1. Codes over GF(4) (d >_ 3)

(9,6,3)' (9,4,4)' (9,3,6)' (9, 1,9) x

(15,12,3)' (15,10,4) 1 (15,8,5)' (15,7,6)'

(15,5,8) 1 (15,4, 9) 1 (15,3, 10)' (15,2, 12)1

(15,1,15)1 (12,9,3)2 (12,7,4)2 (12,5,6)2

(12,3,8)2 (12,2,9)2 (12,1,12)2 (16,13,3)3

(16,11,4)3 (16,8,6)3 (16,6,8)3 (16,4,9)3

(16,3,12)3 (16,1,16)3 (20,17,3)3 (20,15,4)3

(20,12,5)3 (20,11,6)3 (20,9,8)3 (20,7,9)3

(20,6,10)3 (20,5,12)3 (20,3,15)3 (20,2,16)3

(20,1,20)3

1 Construction A; 2 Construction A or B; 3 Construction B
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Table 2. (72,72- p,d) Codes over GF(8) (3 < d < 15)

d 3 4 5 6 7 8 9 10 11 12 13 14 15

po 2 3 4 5 6 7 8 9 9 9 9 9 9

PI 1 1 2 2 3 3 4 4 5 5 6 6 6

P2 0 1 1 1 2 2 2 3 3 3 4 4 4

p3 0 0 1 1 1 1 2 2 2 2 3 3 3

p4 0 0 0 1 1 1 1 1 2 2 2 2 2

P5 0 0 0 0 1 1 1 1 1 1 2 2 2

Ps 0 0 0 0 0 1 1 1 1 1 1 1 2

P7 0 0 0 0 0 0 1 1 1 1 1 1 1

p 3 5 8 10 14 16 20 22 24 24 28 28 29

Table 3. Comparison between BCH codes and the new codes over GF(4)

BCH [12] (15, 11, 3) (15, 9, 5) (15, 6, 7) (15, 4, 9) (15, 3, 11)
New (20, 17, 3) (20, 12, 5) (20, 9, S) (20, 7, 9) (20, 5, 12)

Note that sometimes the actual lower bound distance d is larger than the design distance

d. For example, in Table 2, both d = 11 and d = 12 lead to the same code (d = 12). The

following theorem gives the relationship between d and d.

Theorem 3 For the above two classes of codes,

(1) ford<n1, d = d.

(2) for d > n a, if there exists an i e I __a {[d], [d] + 1,...,N2} so that i divides d,

then d = d, and if for all i E I, i does not divide d, then d > d.

Proof: (1) This follows from the fact that [d] = d and from (13).

(2) Suppose i0 E I divides d. Then d d •= [701 _0 = d. If for all i E I, i does not divide d,

then [dli > d+ 1 for all i • I. By (13), d >_ d+ 1. QED

Corollary 1. For d > hi, if d is a prime, then the above (n,k,d) codes have a lower bound

distance _d >_ d + 1.
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4 Constructions of Trellis Codes Over GF(q)

The idea of applying set partitioning to trellis coding over finite fields was discussed in

references [13, 14]. Convolutional codes have the advantage of achieving large free distances

by increasing complexity without decreasing information rate. For this reason, with q-ary

convolutional codes, we can construct q-ary multi-level trellis codes with the same minimum

distance and higher information rates than the above block codes.

High rate convolutional codes over GF(q)(q > 2) are difficult to find, and their decoding

complexities are high because they are powers of q. Most of the work on constructing

convolutional codes over GF(q) has focused on low rate codes. Recently, Ryan and Wilson

[15] have constructed some optimal low rate convolutionat codes over GF(q). In this section,

we will show how to construct high rate multi-level trellis codes over GF(q) by using good

known low rate convolutional codes with reasonable decoding complexities as component

codes. We should point out that, from the multi-level coding point of view, the finite state

codes found in [13] can be viewed as one level codes based on set partitioning of multi-

dimensional signal spaces over GF(q).

To construct high rate multi-level trellis codes, we use low rate q-ary convolutional codes

to replace some of the low rate q-ary block codes as component codes. It is not necessary to

replace every block component code with a convolutional code. The idea of using a mixture

of block and convolutional codes at different levels has appeared in [4, 6, 11].

Then the rate of theLet Ri be the rate of component code Ci (i - 0, 1,...,m - 1).

overall code is

1 rn--1

R = m i_o Ri= (24)

Since some component codes are convolutional codes, we will use the free Hamming distance

(dfr_) instead of the minimum Hamming distance (d_n) over a block. The free Hamming

distance of a trellis code is defined to be the minimum Hamming distance between all pairs
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of distinct code sequences. In this case, we have a lower bound on the free distance:

ds_, >_ d= rrfin {A,d1(i), 0 < i < m- 1} (25)

where d.t(i) is the free (or minimum) distance of the convolutional (or block) code C_, for

i=O,1,...,m-1.

Example 2. We will take the (20, 9, 8) code from Table 1 and show how to improve its

information rate by using convolutional codes. As shown in example 1, the component codes

are C0 = (5,0,_), C1 = (5,2,4), C2 = (5,3,3), and 6'3 = (5,4,2). Now replace Co by a

rate 1/2 4-ary convolutional code with free distance 8 and 64 states and C1 by a rate t/2

4-ary convol_utional code with free distance 6 and 16 states. Thus the trellis code has rate

R= ¼ (1 +½+g+3 4) =3g and free distance 8, whereas the (20, 9, 8) block code also has

minimum distance 8, but its rate is only 9/20.

From this example, we can give the following principles for constructing multi-level trellis

codes with design distance d from the above block codes. If a block component code Ci has

rate less than 1/2, we consider a rate 1/2 convolutional code with free distance larger than or

equal to d/Ai instead of the block component code; otherwise, retain the block component

code. If the constraint length of the rate 1/2 convolutional code is too large, implying that

the decoding complexity is too great, and if the rate of the block component code Ci is less

than 1/3, we can consider a rate 1/3 convolutional code with free distance larger than or

equal to d/Ai as a candidate to replace the block component code. Other replacement codes

can be found in a similar way.

Table 4 lists some codes obtained from the block length 20 codes listed in Table 1, where

Ri is the rate of component code Ci, Ki is the constraint length of convolutional code Ci, and

dr(i) is the free (or minimum) distance of convolutional (or block) code C_, for i = 0, 1, 2, 3.

The memory order of convolutional code Ci is mi =/(i - 1, i.e., the number of states of code

Ci is 4 K_-x To compare with block codes, we also use the notation (n, k, d) for the multi-

level tr_ellis codes constructed, where n is the block length of the block component codes and
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k = nR is not necessarily an integer. Compared to the construction B block codes listed in

Table 1, the codes in Table 4 exhibit a clear improvement in information rate. For example,

the block code of block length 20 and minimum Hamming distance 12 has information rate

1/4, whereas the trellis code with free Hamming distance 12 achieves an information rate of

29/60, or close to 1/2.

Table 4. Trellis codes over GF(4) (6 <_ d < 12)

Trellis code Ri Ki dl(i)

1/2-C 3 6

3/5-B - 3

(20,13_,6) 4/5-B - 2

4/5-B - 2

(20,12, 8)

1/2-C 4 8

1/2-C 3 6

3/5-B - 3

4/5-B - 2

(20, 11, 9)

1/2-C 5 9

1/2-C 3 6

3/5-B - 3

4/5-B - 2

(20, 10_,9)

I/3-C 3 9

I/2-C 3 6

3/5-B - 3

4/5-B - 2

(20,9], 12)

1/3-C 4 12

1/2-C 3 6

1/2-C 3 6

3/5-B - 3

Note: In the table, the letter B denotes a block code over GF(4) (an extended Reed-Solomon

code), and C denotes a convolutional code over GF(4) from [15].
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5 Constructions of Binary-to-q-ary Trellis Codes

In many practical systems, the output of the information source is binary symbols, and the

channel signals can be viewed as symbols in GF(2n). Here are two examples:

1. For multi-level codes based on multi-dimensional signal constellations [10, 16-18], sup-

pose H_ and Hi+l are subsets of the signal set Ho and H_ D Hi+l. Then the cosets of

H_/H_+I are usually isomorphic to GF(q), Where q is the number of cosets in HJH_+I.

So the outputs of the component encoder E_ can be viewed as elements in GF(q), but

the inputs of the encoder are binary symbols.

2. Piret [19] suggested a class of convolutional codes called word error-correcting codes.

His word-error-correcting codes use word weight instead of Hamming weight as the dis-

tance measure. Consider an (n, k) convolutional code with k input bits and n output

bits at each time interval. The n output bits are called a word, and if they are not

all zeros, the word weight is 1. The word distance between any two code sequences

is the word weight of the difference between these two code sequences. The minimum

free word distance of a binary convolutional code is defined to be the minimum word

distance between all pairs of distinct code sequences. Alternately, if we view a word

as a symbol over GF(2"), an (n, k) convolutional code is actually a k-input, 1-output

binary-to-2'_-ary convolutional code, i.e., it is a special class of binary-to-q-ary convo-

lutional codes.

Ryan and Wilson [15] presented some optimal low rate binary-to-q-ary convolutional

codes for q = 4, 8, and 16. In their paper, the rate was defined as the number of input bits

divided by the number of output symbols. We call this the binary-to-q-ary rate, denoted by

Rb,q. If the binary-to-q-ary rate of a k input bit, n output symbol convolutional code is k/n,

then the normalized rate is defined as R _ k/(n log s q). We will use the normalized rate to

compare with the codes of the previous section.
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The encoderstructure of binary-to-q-ary trellis codesis still asshownin Figure 1. Many

kinds of codes,including binary-to-q-ary codes,word-error-correctingcodes,and codesover

GF(q) can be used as componentcodes. (Codesover GF(q) can be chosen as component

codes because any code over GF(q) can be viewed as a binary-to-q-ary code as long as each

input symbol is viewed as log 2 q bits. In this sense, trellis codes over GF(q) are a special

case of binary-to-q-ary trellis codes.) Because the free distance of a code depends only on

the structure of the code sequences rather than on the input sequences, the inequality of

(25) also holds for binary-to-q-ary trellis codes.

As in the previous section, we list codes corresponding to the block length 20 codes listed

in Table 1. Note that here the number of state is 2 g_-I rather than 4 g_-l. Comparing Table

4 to Table 5, one finds that the codes listed in Table 5 have less decoding complexity and

a lower information rate. Therefore the codes in Table 5 offer additional trade-offs between

information rate and decoding complexity.

Note that the two (20,13½, 6) codes have the same parameters in both tables, but the

Table 5 code is better because the binary-to-4-ary convolutional code Co has a better distance

distribution (fewer nearest neighbors) than the convolutional code over GF(4).
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Table 5. Binary-to-4-ary Trellis Codes(6 < d < 12)

Trellis codes Ri Ki d](i)

1/2-C 6 6

3/5-B - 3

(20,131,6) 4/5-B - 2

4/5-B - 2

(20, 10_, 8)

1/4-C 4 8

1/2-C 4 4

3/5-B - 3

4/5-B - 2

(20, 91, 10)

I/4-C 5 I0

i/2-c 5 5

I/2-C 4 4

3/5-B - 3

(20, 9¼, 12)

I/4-C 6 12

I/2-C 6 6

I/2-C 4 4

3/5-B - 3

Note: In the table, the letter B denotes a block code over GF(4) (an extended Reed-Solomon

code), and C denotes a binary-to-4-ary convolutional code from [15].

6 Fast Coding and Decoding

Coding and decoding schemes for multi-level codes based on two way partition chains were

first presented by Imai and Hirakawa [1]. These were later generalized by Pottie and Taylor

[5], Tanner [4], and Wu [11]. For simplicity, we take the construction A block codes as an

example to illustrate the principles of encoding and decoding, which also apply to the other

codes discussed above.

From the structure of the encoder shown in Figure 1, the encoder consists of m component

encoders and a mapper. Since known encoders can be used as component encoders, the

major problem of encoding is to decrease the complexity of the mapping. From (16), (17),

(2), and (3), the mapping can be implemented by computing P_(x) in advance. Then the
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coefficientsof a codewordS(x) can be obtained by taking the product of y}i) and Pi(x) for

i = 0, .1,..., q - 2 and j = 0, 1,..., q - 2. Therefore, we must store the coefficients of Pi(x)

in advance, for i = 1,2,... ,q - 2 (note that Po(x) = 1). Since the degree of Pi(x) is i, only

i symbols are required to store the coefficients of Pi(x). The total number of symbols to be

stored in the encoder is therefore ½(q - 2)(q - 1). From the following decoding procedure,

we will see that the coefficients of Pi(x) should also be stored in the decoder.

Assume that the receiver makes hard decisions and let o6(x) be a received codeword over

GF(q). Then the decoding procedure is as follows:

Step 1. For j = 0,1,...,n2- 1, let s_J)(x) = SJ(x) and set _jo)= S_J)(1).

Then [-(0) -(o)_Yo , Yl ' " " " ' _,_2-1_(0)) is the decoder input for code Co, and the output is denoted by

7)
' " " " ' ,7n2--1 ] "

Step 2. (2 < i < q- 1) For j = 0,1,...,n2 - 1, let

and set

¢i-1>

(26)

(27)

Then _,Yo[~(i-i), _1"_(i-1),..., on2_lg(i-1)'_yis the decoder input for code Ci-1, and the output is denoted

by

) , • . • , _/n2_ 1 y "

Finally, the estimated information sequences ]i(x) are obtained from the decoder esti-

mates

^(1) ^(i) .,_)(1)), for 0,1, ..,qY0 , Yl ,-. i = 2,. - 2, by applying the inverse of the encoder mapping.

As shown by Tanner [4], the above decoding procedure can achieve the lower bound

distance aT of (13). If the design distance d _< q - 1 in the above decoding procedure, only

the first d - 1 steps are needed, and for the remaining q - d steps,

(_)o(,-,) ._(,-,) ^(i-1)) /-(,-1) l,-,) (t',)) for i d 1,d 2,.. q 1. (28),_1 ,'",Yn2-1 = [Yo ,!) ,-..,Y _ , = - -- ., --
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Also, if d > q - 1, the first [q_---_dl]steps can be omitted.

From the decoding procedure, we can see that the decoding complexity is the sum of

the complexity of computing (26) and (27) and the decoding complexity of each component

code. The complexity of computing (26) and (27) is relatively small since the coefficients of

the polynomials Pi(x) are computed in advance, and in most cases the decoding complexity

is dominated by the component code whose decoding complexity is the highest among all

component codes.

7 Conclusions

We have applied set partitioning to multi-dimensional signal spaces over GF(q) to construct

powerful q-ary block and trellis codes. Many of these codes have a better trade-off of min-

imum distance, information rate, and decoding complexity than previously known q-ary

codes. A fast decoding algorithm based on hard decision multi-stage decoding has been

presented. (A decoding algorithm based on soft decisions appears to be quite complex at

this time.)

Although only Reed-Solomon codes, shortened extended Reed-Solomon codes, and ex-

tended Reed-Solomon codes are used as component codes in the block code constructions,

other q-ary codes, such as q-ary BCH codes, can also be used as component codes, possibly

resulting in longer and better codes.

The trellis codes constructed have better performance, but more decoding complexity,

than the block codes. A comparison of performance vs. decoding complexity between these

new block and trellis codes will be an interesting subject for further study.
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Fig.l The structure of an encoder for a multi-level code



Appendix C

A Hybrid M-Algorithm/Sequential Decoder

for Convolutional and Trellis Codes


